CODIFICA DEL TRASMETTITORE

Commutare i microinterrutori • (vedere fig. 4) in modo da far coincidere la loro configurazione con quella dei microinterruttori del ricevitore posto in centrale.

ALIMENTAZIONE DEL SENSORE

Collegare la clip (fig. 4) alla batteria fornita ed attendere 8 minuti circa affinché il sensore si stabilizzi; ciò vale sia per la prova che per il funzionamento normale.

COLLAUDO DEL SENSORE

Per collaudare il sensore chiudere il ponticello in modo da poter visualizzare l'avvenuto allarme tramite il led rosso , ed chiudere il ponticello per effettuare il test con un tempo di inibizione allarme di 4 secondi, quindi eseguire un percorso a zig-zag difronte al sensore controllando l'accensione del led .

FUNZIONAMENTO A REGIME

Terminato il collaudo del sensore, aprire il ponticello (facoltativo); in tal modo il led viene escluso eliminando così l'assorbimento ad esso imputato.

Riaprire il ponticello 2; in questa condizione il sensore, appena rivelato l'allarme invia un segnale 500 msec. e si inibisce per almeno 3 minuti.

Tutto ciò si reputa necessario per limitare al minimo l'assorbimento dalla batteria.

N.B. Il sensore è provvisto di un buzzer per la segnalazione di batteria scarica. Essa va sostituita entro breve tempo dal momento in cui è avvenuta tale segnalazione.

IDENTIFICAZIONE DELLE PARTI

Fare riferimento alla tabella seguente ed alla figura 4 per l'identificazione delle parti sulla scheda del sensore.

- microinterruttori per impostazione codice.
- riduzione del tempo di inibizione tra due allarmi
- 3 sensore piroelettrico duale.
- esclusione led di allarme.
- 6 led di allarme.
- 6 regolazione della sensibilità.
- antisabotaggio.
- S clip per batteria da 9 volt.

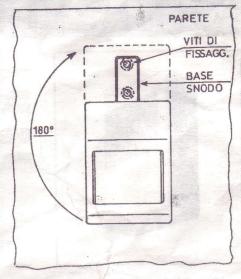


FIG. 3

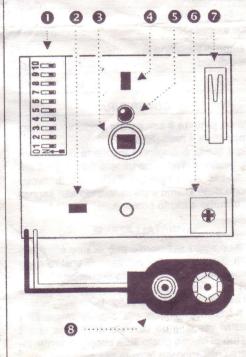


FIG. 4 - Identificazione delle parti sul circuito del sensore.