With compliments Helmut Singer Elektronik www.helmut-singer.de info@helmut-singer.de fon +49 241 155 315 fax +49 241 152 066 Feldchen 16-24 D-52070 Aachen Germany

PCM-4 PCM Channel Measuring Set

WG

for measurements on PCM coders/decoders between analog and digital interfaces

- Compact instrument for A-A, A-D, D-A and D-D measurements to CCITT Rec. 0.133, G.700 Series and North American standards (BN 984/02)
- Both versions with 64 kbit/s interface (option) complying with CCITT Rec. G.703
- 30/32-channel version (BN 984/01) with CRC-4 extended frame to CCITT G.704
- 24-channel version (BN 984/02) with normal/extended (CRC-6) PCM frame structure to CCITT Rec. G.704 and North American standards
- Linking of setups to form an automatic sequence of measurements
- Acts as system controller for MU-30 test point scanner, suitable ASCII printer or graphics plotter (hp-GL) connected via IEC 625/IEEE 488 bus.
- A-law and µ-law (included in both versions)
- Digital signal processing for high accuracy and high measuring speed

Applications

The use of digital systems for transmission and switching is continuing to expand rapidly. As a result, PCM multiplexers between the digital and analog levels (half channel measurements) must now satisfy new requirements which place considerable demands on conventional measuring technology.

The PCM-4 PCM Channel Measuring Set can handle practically all PCM multiplexer measurements, and also measurements on the constituent subassemblies of digital exchanges. Transmultiplexer measurements are also possible because investigations between digital interfaces can be made. Single modules (e.g. CODECs) may also be checked as it is possible to carry out all measurements via 64 kbit/s interfaces.

All PCM-4 functions are remote controllable via the <IEC 625>/ IEEE 488 interface. The user is therefore free to combine the PCM-4 with other instruments to create the measuring system of his choice.

Characteristics

The compact PCM-4 has a complete range of functions for measurements between analog and digital interfaces. Besides the μ P control and the interfaces, the PCM-4 has four main sub-assemblies for carrying out a variety of measurements. These subassemblies are: a digital signal generator, a digital signal receiver, an analog generator and an analog receiver. The PCM-4, which exploits digital signal processing and microprocessor control to the full, is so accurate that it can operate near the theoretical limits of the PCM technique. Great pains have been taken to ensure extremely high measuring speeds.

The integral screen has two advantages: firstly user-friendly operation and numerical display, secondly graphic output display. It only requires a few keystrokes to output graphs showing gain vs frequency, gain vs input level, or total distortion. To adapt to a wide range of test items the PCM-4 has special keys for selecting the X and Y ranges. Other measurements such as idle channel noise, crosstalk or bit error count can be shown as histograms. The telephone channels are shown along the X-axis.

Digital interfaces complying

with CCITT Rec. G.703	2048 kbit/s (BN 984/01)
and AT&T standards	
	(BN 984/02 and BN 984/05)
Analog interfaces	
	and complex impedance

Options

64 kbit/s digital interfaces . . codirectional, serial or parallel Return Loss and Longitudinal Conversion

Transfer Loss Bridge complies with CCITT Rec. 0.121 Accessories: D.C. Loop Holding Circuit, Test Point Scanner

Further characteristics and applications

Operating the PCM-4

The PCM-4 itself gives information in the form of a menu and provides prompts to help the operator. The most important measurement modes are shown in MODE LIST A. It only requires a few key strokes to display results on the screen. Less common measurements are shown in MODE LIST B. Softkeys along the edge of the screen make it easy to switch rapidly between test setups and to quickly select other important parameters.

The PCM-4 user can also define his own measurement setups, and store them for future use. Up to 40 such setups can be linked together to form an automatic sequence of measurements which is user-specific.

Multi-processor system

Only because the PCM-4 is controlled by a number of microprocessors is it possible to combine digital signal processing, an enormous range of measurements, and ease of operation in one instrument. There are three microprocessors, one handles the screen, one is responsible for the general control functions of the PCM-4 and remote control via the < IEC 625 >/IEEE 488 interface. The last processor evaluates the results.

The multiprocessor system means that measuring speed can be optimised; for example, new setting commands can be sent over the remote-control interface at the same time as the results are being processed.

Overview of measurement modes called up via the "MODE LIST B" key

Total distortion measurement with noise, selected with "MODE LIST A", "5" and "1" keys

Special measurements

Another special feature of the PCM-4 is the facility for signalling investigation; the usual telephone channel measurements and out-of-band measurements up to 128 kHz can, of course, also be made.

Moreover, it is also possible to check the bit error ratio of a 64 kbit/s channel or the group delay of a "half-channel".

Measurements on two-wire test items are particularly straightforward and easy. While measurements are being carried out on the analog side of the test item, 2 Mbit/s (BN 984/01)/ 1.5 Mbit/s (BN 984/02) or 64 kbit/s loops can be set up on the digital side. The information and signalling bits in any receive channel can be transferred to any other send channel of the 2 Mbit/s/1.5 Mbit/s loop.

System controller

When used as system controller, the PCM-4 controls the MU-30 via the IEC 625/IEEE 488 bus, making rapid measurements in all channels possible. The results can be automatically printed out on a suitable ASCII printer during the measurement run. As well as the result, tolerance thresholds can be printed out to help in evaluating the performance of the test object. If a graphics plotter (using hp-GL) is used, a press of a button is sufficient to plot out the complete screen contents. Several curves can be plotted on the same axes so that the scatter of various test items can easily be seen.

Histogram of an error count in telephone channel 1

Numerical result display after pressing "GRAPH/NUM" key

Measurement mode	Measurement conditions	A-A	A-D	D-A	0-0
Level measurement	With sinusoidal signal 20 Hz to 4 kHz (72 kHz). With noise signal to CCITT Rec. 0.131 and North American standards	•	•	•	•
Overall loss Echo return loss Singing return loss	With sinusoidal signal at 813 or 1014 Hz 10 and a level of -10 or 0 dBm0 With noise signal ERL and a level of -10 dBm0, to North American standards With noise signal SRL or SRL HI and a level of -10 dBm0, to North American standards	•	•	•	•
Transhybrid loss	2-wire termination with 910 Ω 39 nF ²	•			•
Variation of gain with frequency	With sinusoidal signal 20 Hz to 4 kHz and a level of -10 or 0 dBm0. Ref. frequency 813 or 1014 Hz " (other reference frequencies available using VAR. MODE)	•	•	•	•
Variation of gain with input level	With sinusoidal signal at 813 or 1014 Hz $^{1\!0}$. With noise signal to CCITT Rec. 0.131 and North American standards	•	•	•	•
Total distortion	With noise signal at 350 Hz 550 Hz or sinusoidal signal at 422 Hz, to CCITT Rec. 0.131 and North American standards. With sinusoidal signal at 813 or 1014 Hz ¹¹ , psoph. or C-message weighted to CCITT Rec. 0.132 and North American standards. With sinusoidal signal at 300 Hz 3350 Hz	•	•	•	•
Idle channel noise	•	•	•	•	
Crosstalk diff. channel	With sinusoidal signal at 301, 813, 1014 ¹⁾ or 3343 Hz. With "Conventional Telephone Signal" to CCITT Rec. G.227 and North American standards, (BN 984/01 psoph. wtd/BN 984/02 C-message weighted).	•	٠	٠	•
Crosstalk same channel	With sinusoidal signal at 301, 813, 1014 " or 3343 Hz	•			•
Out-of-band measurement	With sinusoidal signal in the range 4.6 72 kHz; receive range 0.2 4 kHz With sinusoidal signal in the range 0.2 4 kHz; receive range 4.6 128 kHz	•	٠	٠	
Harmonic distortion 4-tone intermodulation	•	•	•	•	
Return loss (option)	Using BN 984/00.10 bridge: reference impedances 600, 900 Ω and complex ³⁾ Using BN 984/00.11 bridge: reference impedances 600/850 Ω and complex ³⁾	Audio	o frequ	Jency	port
Longitudinal conversion loss (option)	Measured to CCITT Rec. 0.121 Using BN 984/00.10 bridge: reference impedances 600, 900 Ω Using BN 984/00.11 bridge: reference impedances 600, 850 Ω	Audio	o frequ	Jency	port
Longitudinal conversion transfer loss (option)	Measured to CCITT Rec. 0.121 Using BN 984/00.10 bridge: reference impedances 600, 900 Ω Using BN 984/00.11 bridge: reference impedances 600, 850 Ω	•	•	•	
Overload capacity Peak load Coder offset	With pos. or neg. peak code, at 813 Hz or 1014 Hz 11		•••		•
Absolute group delay Group delay distortion	Loop measurements: AM-Signal with 8 fixed measuring frequencies similar to the signal described in CCITT Rec. 0.81 and IEEE Standards	•	•	•	•
Signalling distortion	Measures the duty cycle deviation of a rectangular signal of 10 or 20 Hz. Duty cycle settable in steps between 10 and 90 %	•	•	•	•
interference from signalling	Weighted measurement (to CCITT Rec. 0.41 and North American standards) in voice channel. Duty cycle of rectangular signal adjustable	•	•	•	٠
Error measurements	Framing errors (FAS and MFAS), CRC errors. Error ratio, error count and error free seconds with pseudorandom sequences or user programable 8 bit word in one channel at 64 kbit/s or via 64 kbit/s interface				٠
RX frame evaluation	Evaluation on screen of words and bits		•		•
MUX/DEMUX operation	One channel multiplexer: with 64 kbit/s input (option) only				•

BN 984/02 and BN 984/05: 1004 Hz
Complex impedance can be modified at factory
20 Ω in series with 820 Ω | 115 nF, can be modified at factory
Note: Measurements on digital Transmit (TX) or Receive (RX) interfaces can be carried out using the 2048 kbit/s (BN 984/01), 1544 kbit/s (BN 984/02) or 64 kbit/s interface (option). The following TX/RX combinations are possible: 2 M/2 Mbit/s; 64 k/64 kbit/s; 64 k/2 Mbit/s; 2 M/64 kbit/s; 1.5 M/1.5 Mbit/s; 64 k/64 kbit/s; 64 k/1.5 Mbit/s; 1.5 M/64 kbit/s.

If nothing to the contrary is stated, the values given below are valid for all operating conditions and device settings within the rated ranges of use for a.c. line voltage, a.c. line frequency and ambient temperature.

Analog generator

Generator output

BN 984/01	balanced, floating, 3-pin CF connector
BN 984/02	
	connector compatible with WECO 310
	connector compatible with I 214 APS
Output impedance,	
switch-selectable	600, 850, 900 Ω and complex ¹⁾
	oearth ≦60 V

Send signals

Sinusoidal signals	
Frequency range	. 20 Hz to 72 kHz

Pseudorandom noise signals

Noise band	CCITT Rec- ommendation	Spectral line spacing	Peak factor 20 log V _P /V _{r.m.s.}
350 to 550 Hz 350 to 550 Hz Conventional tele-	0.131 0.131 G.227	3.906 Hz 7.813 Hz 7.813 Hz	10.5 ±0.5 dB 10.5 ±0.5 dB 10.5 ±0.5 dB
phone signal 560 to 1965 Hz (Echo Return Loss) 260 to 500 Hz	North	7.813 Hz 7.813 Hz	10.5 ±0.5 dB
(Singing Return Loss) 2200 to 3400 Hz (Singing Return Loss High)	American standards	7.813 Hz	10.5 ±0.5 dB

Group-delay measuring signal

Similar to the measuring signal described in CCITT Rec. 0.81 and IEEE Standards.

Measuring frequencies									•	292, 500, 604, 1000,
					17	792	2,	26	60	4, 2792 and 3396 Hz
Modulation frequency se	le	cta	at	λie	•					41.66 or 83.33 Hz

4-tone signal

Four equal level tones at 857, 862, 1373, and 1388 Hz

Send levels

Display of power levels (dBm0), can be switched over to voltage levels (dB0).

Relative level

Level entry in steps of 0.01 dB from	- 19.9 to +9.9 dBr
Displayed on screen in steps of 0.1 dB.	

Levels relative to 1 mW at a point of 0 rel. level Level entry in steps of 0.01 dB.

Level range in the preferred range for relative level

- 17 to +3 dBr, at 600 Ω	
for noise (350 to 550 Hz), at least	60 to 2.0 dBm0
for sine signals (f \ge 200 Hz), at least	-60.0 to + 10.0 dBm0
for all other signals, at least	-30.0 to +2.0 dBm0

¹⁾ Complex impedance: 220 Q in series with 820 Q | 115 nF (modifiable exworks)

3) BN 984/02 and BN 984/05 with 1004 Hz

Analog receiver

Receiver input

Two-wire input and output The two-wire connector can be terminated with a complex impedance²⁾ for transhybrid loss measurements.

Receive levels

Calibration, see "analog generator"

Relative levels, see "analog generator"

Levels relative to 1 mW at a point of 0 rel. level Level range in the preferred range of the relative level -9.9 to +9.9 dBr and at 600 Ω , signal level measurements, at least . . -60.0 to + 10.0 dBm0 noise and crosstalk measurements,

Receive filters

Wideband filters passband range:	Narrow-band filters passband at:
200 Hz to 4 kHz 20 Hz to 4 kHz	301 Hz 813 Hz
330 Hz to 3100 Hz	1014 Hz ³⁾
20 Hz to 72 kHz	3343 Hz
4.6 kHz to 128 kHz	350 to 550 Hz

Filters for weighted noise measurements

Psophometer filter (CCITT Rec. P.53/0.41) C-message weighting filter to North American standards 3 kHz flat filter to North American standards Psophometer filter with 2 kHz notch-filter C-message weighting filter with 2 kHz notch-filter Bandpass 300 to 3350 Hz, with 2 kHz notch-filter

Filters for S/N measurements

Signal filter	Noise filter	Rec.
350 to 550 Hz	800 to 3350 Hz	CCITT 0.131
800 to	Channel filter with notch at 813 Hz	-
855 Hz Psophometer filter with	Psophometer filter with notch at 813 Hz	CCITT 0.132
1000 to	Channel filter with notch at 1014 Hz 3)	—
1025 Hz	Psophometer filter with notch at 1014 Hz ³⁾	-
	C-message weighting filter with notch at 1014 Hz ³⁾	CCITT O. 132

Filters for harm./interm. distortion measurements

		Passband range:
2nd order harmonic distortion	2000 Hz to 2028 Hz	
3rd order harmonic distortion	3000 Hz to 3042 Hz	
	B-A	480 Hz to 560 Hz
2nd order intermodulation product	B+A	2229 Hz to 2251 Hz
3rd order intermodulation product	2B-A	1885 Hz to 1920 Hz

²⁾ Complex impedance: 910 Q 39 nF (modifiable ex-works)

Digital signal generator

PCM frame structure BN 984/01

32 channel PCM frames containing:

30 telephone channels	•	•	t	0	J	1.1	F	(e	C. (á./	04 Para. 3.	5
or 31 telephone channels									ti	me	e slots 1 to 3	l
or 32 telephone channels												

BN 984/02 and 984/05

Selectable between	T1 "norm."
12 FRM/MFRM to CC	
	and T1 "extd."
24 FRM/MFRM to CC	ITT G.704 Para. 3.1
Telephone channels per frame	
Channel sequences	
Signalling	
u-law	CCIS or CAS (75/6)
A-law	CCIS

Generator outputs

BN 984/01
Interface characteristics comply with CCITT Rec. G.703.
Line codes NRZ, AMI and HDB3
Coaxial output* Versacon® 9 Universal Connector
System, adaptable to all common connectors
Output impedance $$
Balanced output
Output impedance $\dots \dots \dots$
BN 984/02 and BN 984/05
Interface characteristics comply with CCITT Rec. G. 703
and North American standards.
Line codes AMI and B87S

Output pulse characteristic	to AT&T
	Technical Advisory No. 34
W-bit insertion	ON or OFF
Balanced output .	fem. connector compatible with
WECO 310 (BN 9	984/02); I 214 APS (BN 984/05)
Output impedance	

Operation and clock supply

Loop-through operation

A test pattern is injected into one time slot of a PCM frame which has been looped through the PCM-4.

BN 984/01

Generator operation

from internal clock	$2048 \mathrm{kHz} \pm 25 \times 10^{-9}$
or external clock	$2048 \mathrm{kHz} \pm 100 \times 10^{-6}$
or external 8 kHz syncsignal	$8 \text{ kHz} \pm 100 \times 10^{-6}$
or clock derived from receiver signal	

Digital loops

2 Mbit/s loop: all time slots are switched through. 2 Mbit/s loop: selected time slots can be switched through

(independent selection of the receive and send channel is possible)

64 kbit/s loop: at relevant interfaces (Option

BN 984/02 and BN 984/05

Generator operation	
from internal clock	$1544 \text{kHz} \pm 25 \times 10^{-6}$
or external clock	$1544 \text{kHz} \pm 100 \times 10^{-6}$
or external 8 kHz sync. signal	$. 8 \text{ kHz} \pm 100 \times 10^{-6}$
or clock derived from receiver signal	

Digital loops

1.5 Mbit/s loop: all time slots are switched through. 1.5 Mbit/s loop: selected time slots can be switched through (independent selection of the receive and send channel is possible).

64 kbit/s loop: at relevant interfaces (Option).

Digital words for telephone channels BN 984/01

Injection of a digital signal in one of the telephone channels 1 to 30 (or 31, 32) or in all telephone channels, or in all telephone channels except the selected channel. Encoding law, selectable A-law or µ-law

BN 984/02 and BN 984/05

Injection of a digital signal in one of the telephone channels 1 to 24, or in all telephone channels, or in all telephone channels except the selected channel.

Send signals

Sine signals	
Frequency range	. 20 Hz to 3.99 kHz
Send level range (in steps of 0.1 dB)	-60.0 to +7.5 dBm0
Noise signals	
Pseudorandom noise signal	
350 Hz to 550 Hz complies with	CCITT Rec. 0.131
Send level range (0.1 dB steps)	-65.0 to +7.5 dBm0
Wideband noise signal for telephone cha	nnels
Noise band	300 to 3400 Hz
Noise band	-65.0 to 0.0 dBm0
Conventional telephone signal	complies with
	CCITT Rec. G.227
Send level range	30.0 to 0.0 dBm0
Echo return loss and singing return loss s	signals to North
American standards	
Noise band of ERL-signal	
Noise band of SRL-signal	260 to 500 Hz
Noise band of SRLH-signal	
Send level range	30.0 to 0.0 dBm0
Group delay measuring signal	
See: "Analog generator signals"	
Send level range	-30.0 to 0.0 dBm0
•	• • • • • • • • • • • • • • • • • • • •
4-tone signal	
See: "Analog generator signals"	20.0 to 0.0 dBm0
Send level range	30.0 to 0.0 dBm0
ldle channel signals	
Any fixed word can be selected. It is also	
words which vary randomly or periodical	ly between two
neighbouring values.	
Bit patterns	
The following are available for bit error m	easurements:
Pseudorandom sequence complying	
with CCITT Rec. V.52	2 ⁹ -1 bits long
Pseudorandom sequence complying	
with CCITT Rec. 0.152	2 ¹¹ -1 bits long
User-programmable 8 bit word	-

External analog signal (via VAR. MODE) An external analog signal can be input via an internal PCM coder and injected in one telephone channel or output via 64 kbit/s interface.

Test facilities and error insertion BN 984/01

AIS transmission (continuous	s sequence of "1"	s)
Frame alignment bit error ration	0	10 ⁻³ or 10 ⁻⁴
Frame alignment word errors		2 or 3 in 4
Multiframe alignment errors .		1 or 2 in 2
CRC-4 error rate settable in s		0.1%
in the range	based on 1 s (100	. 0.1 to 99.9 % 0 CRC-4 words)

BN 984/02 and BN 984/05

ALL ONES transmission Bit 2 alarm transmission Bit 2 is set to "0" in each channel S bit alarm (T1 "norm") transmission S-bit in frame 12 is set to "1" m bit alarm (T1 "extd") transmission Eight "0"-bits alternating with eight "1"-bits 1 in 6 bits or 2 in 4 bits FAS errors S-bit/MFAS errors 1 or 2 in 6 bits 0.3% CRC-6 error rate settable in steps of . in the range . . <u>.</u> . . . · 0.3 to 99.7 % based on 999 ms (333 multiframes)

Signalling facilities BN 984/01

Static signalling bits Transmission of signalling bits a b c d in time slot 16 for selected and unoccupied telephone channels Signalling bit value settable via menu

Dynamic signalling bits Signalling bit value for selected telephone channel set externally via aux. parallel input

BN 984/02 and BN 984/05

Static signalling bits Transmission of signalling bits A, B/A, B, C, D for selected and unoccupied telephone channels Signalling bit value settable via menu

Dynamic signalling bits

Signalling bit value for selected telephone channel set externally via aux. parallel input for CAS (7%) only, or S/m bit value set externally via contradirectional 4 kbit/s input.

Digital signal receiver

PCM frame structure

see "digital signal generator"

Digital signal inputs

BN 984/01

Interface characteristics comply will	h CCITT Rec. G. 703.
Line codes	NRZ, AMI and HDB3
Coaxial input*	
Balanced input	120 Ω or >3 kΩ
Input signal monitoring via LEDs:	
NO SIGNAL AIS NO EDAME NO	

NO SIGNAL, AIS, NO FRAME, NO MULTIFRAME.

BN 984/02 and BN 984/05

Interface characteristics comply with CCITT Rec. G. 703 and North American standards.

Balanced input fem. connector compatible with WECO 310 (BN 984/02); I 214 APS (BN 984/05) Input signal monitoring via LEDs: NO SIGNAL, ALL ONES, NO SYNC, REMOTE ALARM.

Evaluation of digital words in telephone channels BN 984/01

Selecting a telephone channel A code word from one telephone channel 1 to 30 (or 31, 32) can be evaluated.

Code word measurements

Signalling bits					a,b,c,d
Encoding law, selectable					
Receive level range, at least					

BN 984/02 and BN 984/05

Selecting a telephone channel A code word from one telephone channel 1 to 24 can be evaluated

ode word measurements

Signalling bits		 A, B/A, B, C, D
Encoding law, selectable		A-law or µ-law
Receive level range, at least		 -80 to +6 dBm0

Receive filters

see "Analog receiver"

Bit error measurements

on telephone channels (64 kbit/s). Shown as a histogram with the X axis representing measuring periods or channels. Bit patterns: see "digital signal generator send signals" Error counts on FAS/MFAS and CRC-signals.

Signalling distortion measurements

Method:

Measure the duty cycle deviation of a rectangular signal. Generator

Frequency setting Duty cycle settable in steps Analog output (back panel)		0 Hz or 20 Hz
Output impedance, mark		., <30 Ω
space .		>20 kΩ
Max.d.c. loading		
Max. switching voltage		70 V
Signalling receiver Measuring range		±10 ms
Resolution		0.1 ms
Analog input (back panel) Input impedance (connected Short-circuit current	t internally to – 15 V)	750 Ω 20 mA

Evaluation and monitoring of words and bits BN 984/01

Monitoring via 8 LEDs (bits 1 to 8) Codewords of selected channel, FAS, NOT FAS, MFAS, NOT MFAS, Signalling bits a b c d (TX and RX)

Evaluation on screen (MODE B 91) Codewords of selected channel, FAS, NOT FAS, MFAS, NOT MFAS, Signalling bits a b c d (RX)

BN 984/02 and BN 984/05

Monitoring via 8 LEDs (bits 1 to 8) Codewords of selected channel, FAS or MFAS, S bits, Signalling bits A, B/A, B, C, D (TX and RX), m bits (1 ... 6 and 7 ... 12)

 $100 \Omega \text{ or } >3 k\Omega$

Evaluation on screen (MODE B 91) Codewords of selected channel, FAS or MFAS, S bits or m bits, Signalling bits A, B/A, B, C, D

Auxiliary outputs (back panel)

Activation signal for crosstalk measurements Analog decoder output for decoded signal of selected telephone channel Signalling output Error and alarm outputs Video signal output

General Specifications

Powersupply
Rated ranges of use for a.c. line voltage,
switch-selectable
in each case - 12% to + 10%
Rated range of use of a.c. line frequency 47.5 to 63 Hz
Power consumption
Safety class to IEC 348 and VDE 0411
Ambient temperature
Rated range of use
Storage and transportation40 to +70 °C
Dimensions
Bench-top instrument (w×h×din mm) 477×244×425
Weight

Options

Codirectional 64 kbit/s input, BN 984/00.01 Codirectional 64 kbit/s output, BN 984/00.02 Electrical characteristics comply with CCITT Rec. G.703.

Serial, 64 kbit/s TTL input, BN 984/00.05 Serial, 64 kbit/s TTL output, BN 984/00.06 Depending on operating mode, co- or contradirectional.

Parallel, 64 kbit/s TTL input, BN 984/00.07 Parallel. 64 kbit/s TTL output. BN 984/00.08 Parallel, 8 bit input/output with 8 kHz timing signal.

Return Loss and Longitudinal Conversion Transfer Loss Bridge

indioici 2000 bilago				
Reference impedances (BN 984/00.10)			600, 900 Ω ¹⁾	
(BN 984/00.11)			600, 850 Ω ¹⁾	

<IEC 625 > Interface Card, BN 958/21

Remote control of all device functions and interrogation of measured values. Connected to the IEC bus with adaptor S 832.

Accessories

Test Point Scanner MU-30, BN 823/11

Balanced connection of 30 (BN 984/01) or 24 (BN 984/02) low-frequency channels in the send and receive direction Frequency range . 0 to 128 kHz Can be remote controlled by the PCM-4 PCM Channel Measuring Set.

D.C. Loop Holding Circuit GH-1, BN 984/00.12 Two d.c. loop holding circuits in one casing.

PCMZ-4, BN 984/00.13

Attachment for removing the d.c. signal component at the audio input and output of the PCM-4 (not for BN 984/02 or BN 984/05 and not necessary if GH-1 [BN 984/00.12] is used)

Ordering Information

PCM Channel Measuring Set PCM-4 2048 kbit/s version, menu in English 1544 kbit/s version, menu in English,	BN 984/01
WECO connectors 2048 kbit/s version, menu in German 1544 kbit/s version, menu in English, 1214 APS connectors	BN 984/02 BN 984/03 BN 984/05
Options (charged extra) Codirectional 64 kbit/s input ¹⁾ Codirectional 64 kbit/s output ²⁾	BN 984/00.01 BN 984/00.02
Serial 64 kbit/s TTL input ¹⁾ Serial 64 kbit/s TTL output ²⁾	BN 984/00.05 BN 984/00.06
Parallel 64 kbit/s TTL input ¹⁾ Parallel 64 kbit/s TTL output ²⁾	BN 984/00.07 BN 984/00.08
Return Loss and Longitudinal Conversion Transfer Loss Bridge 600/900 Ω^{33} 600/850 Ω^{33}	BN 984/00.10 BN 984/00.11
Analog generator output impedance modified to $Z_{out}\approx 0~\Omega$ in place of complex impedance	BN 984/00.34
Software retrofitted to the latest status	BN 984/00.41
<iec 625=""> Interface Card with IEEE 488 connector and connecting cable K 420</iec>	BN 958/21
Accessories (charged extra) Test Point Scanner MU-30 with < IEC 625 > Interface Card	BN 823/11
D.C. Loop Holding Circuit GH-1	BN 984/00.12
with capacitor-coupled output D.C. Decoupling for PCM-4, PCMZ-4 (not for BN 984/02 or BN 984/05)	BN 984/00.13
IEEE 488/ <iec 625=""> Adaptor (m-m) for <iec 625=""> interface card</iec></iec>	S 832
Front and Back Panel Covers SD-5, (1 set)	BN 700/00.25

Accessories (charged extra)	
Test Point Scanner MU-30 with < IEC 625 > Interface Card	BN 823/11
D.C. Loop Holding Circuit GH-1 with capacitor-coupled output	BN 984/00.12
D.C. Decoupling for PCM-4, PCMZ-4 (not for BN 984/02 or BN 984/05)	BN 984/00.13
IEEE 488/ <iec 625=""> Adaptor (m-m) for <iec 625=""> interface card</iec></iec>	S 832

Equipped with the Versacon® 9 75 Ω basic connector and BNC adaptor. For other adaptor types, see "Specification Sheet Versacon® 9", and order chosen type when ordering instrument.

Only one input can be used at any one time.
Only one output can be used at any one time.
Only one bridge can be fitted at any one time.

¹⁾ For return loss measurements: additional complex impedance 220 Ω in series with 820 Q | 115 nF; can be modified at factory.

A Specification Sheet with more details and a Colour Brochure are available on request